
소프트웨어 공학 개론

강의 6: 클래스 다이어그램

최은만
동국대학교 컴퓨터공학과

강의 6: 클래스 다이어그램

최은만
동국대학교 컴퓨터공학과

모델링

l 설계와 모델링

l UML

l 클래스 다이어그램

2

l 설계와 모델링

l UML

l 클래스 다이어그램

UML

l 분석, 설계를 비주얼 화, 문서화 하기 위한 그래픽 언어

l Unified
l 이전의 OO 방법들의 통합

l Modeling
l 객체지향 분석 설계를 위한 비주얼 모델링

l Language
l 모형화된 지식(의미)을 표현

l 분석, 설계를 비주얼 화, 문서화 하기 위한 그래픽 언어

l Unified
l 이전의 OO 방법들의 통합

l Modeling
l 객체지향 분석 설계를 위한 비주얼 모델링

l Language
l 모형화된 지식(의미)을 표현

3

UML은 이다.

l 시스템에 대한 지식을 찾고 표현하기 위한 언어

l 시스템을 개발하기 위한 탐구 도구

l 비주얼 모델링 도구

l 근거가 잘 정리된 가이드라인

l 분석, 설계 작업의 마일스톤

l 실용적 표준

l 시스템에 대한 지식을 찾고 표현하기 위한 언어

l 시스템을 개발하기 위한 탐구 도구

l 비주얼 모델링 도구

l 근거가 잘 정리된 가이드라인

l 분석, 설계 작업의 마일스톤

l 실용적 표준

4

UML은 이 아니다.

l 비주얼 프로그래밍 언어 환경

l 데이터베이스 표현 도구

l 개발 프로세스(SDLC)

l 모든 문제의 해결책

l 품질 보증 방안

l 비주얼 프로그래밍 언어 환경

l 데이터베이스 표현 도구

l 개발 프로세스(SDLC)

l 모든 문제의 해결책

l 품질 보증 방안

5

UML

Every h/w engineer
understands curcuit
diagram.

Every s/w engineer
WILL understand UML
diagrams.

6

Every h/w engineer
understands curcuit
diagram.

UML의 배경과 역사

l UML은 OMT(Object Modeling Technique)[Rumbaugh, 1991]와
Booch[Booch,1994], OOSE(Object-Oriented Software
Engineering)[Jackson, 1992] 방법의 통합으로 만들어진 표현

7

UML 2.0 다이어그램 체계

8

UML 다이어그램

l 시스템의 모델링은 기능적 관점, 구조적 관점, 동적 관점으로 구성

9

UML 모델링 과정

➊ 요구를 사용 사례로 정리하고 사용 사례 다이어그램을 작성

➋ 클래스 후보를 찾아내고 개념적인 객체 모형을 작성

➌ 사용 사례를 기초하여 순서 다이어그램을 작성

➍ 클래스의 속성, 오퍼레이션 및 클래스 사이의 관계를 찾아
객체 모형을 완성

➎ 상태 다이어그램이나 액티비티 다이어그램 등 다른 다이어그램을
추가하여 UML 모델을 완성

➏ 서브시스템을 파악하고 전체 시스템 구조를 설계

➐ 적당한 객체를 찾아내거나 커스텀화 또는 객체를 새로 설계

10

➊ 요구를 사용 사례로 정리하고 사용 사례 다이어그램을 작성

➋ 클래스 후보를 찾아내고 개념적인 객체 모형을 작성

➌ 사용 사례를 기초하여 순서 다이어그램을 작성

➍ 클래스의 속성, 오퍼레이션 및 클래스 사이의 관계를 찾아
객체 모형을 완성

➎ 상태 다이어그램이나 액티비티 다이어그램 등 다른 다이어그램을
추가하여 UML 모델을 완성

➏ 서브시스템을 파악하고 전체 시스템 구조를 설계

➐ 적당한 객체를 찾아내거나 커스텀화 또는 객체를 새로 설계

UML 모델링 과정

11

UML 클래스 다이어그램

l UML 클래스 다이어그램

l 객체지향 시스템에 존재하는 클래스, 클래스 안의 필드, 메소드, 서로 협

력하거나 상속하는 클래스 사이의 연결 관계를 나타내는 그림

l 나타내지 않는 것

l 클래스가 서로 어떻게 상호작용 하는지

l 자세한 알고리즘

l 특정한 동작이 어떻게 구현되는지

l UML 클래스 다이어그램

l 객체지향 시스템에 존재하는 클래스, 클래스 안의 필드, 메소드, 서로 협

력하거나 상속하는 클래스 사이의 연결 관계를 나타내는 그림

l 나타내지 않는 것

l 클래스가 서로 어떻게 상호작용 하는지

l 자세한 알고리즘

l 특정한 동작이 어떻게 구현되는지

12

클래스 나타내기

l 박스 위에 클래스 이름
l 추상 클래스는 이탤릭체
l 인터페이스 클래스는 <<interface>> 추가

l 속성
l 객체가 가지는 모든 필드를 포함

l 오퍼레이션/메소드
l 아주 흔한 메소드(get/set)는 생략
l 상속된 메소드도 포함할 필요 없음

l 박스 위에 클래스 이름
l 추상 클래스는 이탤릭체
l 인터페이스 클래스는 <<interface>> 추가

l 속성
l 객체가 가지는 모든 필드를 포함

l 오퍼레이션/메소드
l 아주 흔한 메소드(get/set)는 생략
l 상속된 메소드도 포함할 필요 없음

13

클래스 속성

l 속성(필드, 인스턴스 변수)
visibility name: type[count] = default value

visibility: + public
protected
- private
~ package(디폴트)
/ derived

_ static variable

l 파생된 속성: 저장되지 않고 다른 속성값으로
부터 계산됨

l 속성(필드, 인스턴스 변수)
visibility name: type[count] = default value

visibility: + public
protected
- private
~ package(디폴트)
/ derived

_ static variable

l 파생된 속성: 저장되지 않고 다른 속성값으로
부터 계산됨

14

클래스 오퍼레이션/메소드

l 오퍼레이션/메소드
visibility name(parameters) : return_type

visibility: + public
protected
- private
~ package(디폴트)
_ static method

l 파리메타 타입 (name: type)

l 생성자나 리턴 타입이 void인 경우는
return_type 생략

l 오퍼레이션/메소드
visibility name(parameters) : return_type

visibility: + public
protected
- private
~ package(디폴트)
_ static method

l 파리메타 타입 (name: type)

l 생성자나 리턴 타입이 void인 경우는
return_type 생략

15

클래스 사이의 관계

l 일반화(generalization): 상속(is_a) 관계
l 클래스 사이의 상속
l 인터페이스 구현

l 연관(association): 사용(usage) 관계(3 종류)
l 의존(dependence): 상대의 정보가 필요
l 집합(aggregation): 어떤 클래스가 다른 클래스의 모임으로 구성
l 합성(composition): 포함된 클래스가 컨테이너 클래스가 없이는 존재할

수 없는 집합관계의 변형

l 일반화(generalization): 상속(is_a) 관계
l 클래스 사이의 상속
l 인터페이스 구현

l 연관(association): 사용(usage) 관계(3 종류)
l 의존(dependence): 상대의 정보가 필요
l 집합(aggregation): 어떤 클래스가 다른 클래스의 모임으로 구성
l 합성(composition): 포함된 클래스가 컨테이너 클래스가 없이는 존재할

수 없는 집합관계의 변형

16

일반화 관계

l 일반화(상속)

l 부모를 향한 화살표로 표시되는 하향 계
층 관계

l 선/화살표는 부모 클래스의 종류에 따라
다름

v클래스:

실선/검은 헤드 화살표

v추상 클래스:

실선/흰 헤드 화살표

v인터페이스:

점선/흰 헤드 화살표

l 일반화(상속)

l 부모를 향한 화살표로 표시되는 하향 계
층 관계

l 선/화살표는 부모 클래스의 종류에 따라
다름

v클래스:

실선/검은 헤드 화살표

v추상 클래스:

실선/흰 헤드 화살표

v인터페이스:

점선/흰 헤드 화살표

17

연관 관계

l 연관(association)
l 어떤 클래스의 인스턴스가 작업을 수행하기 위하여 다른 클래스를 알

아야 함

1. 다중도(multiplicity)
• * a 0, 1, or more
• 1 a 정확히 1개
• 2..4 a 2개 내지 4개
• 3.. * a 3개 이상

2. 이름 – 객체들의 관계 이름
3. 방향성(navigability) – 질의의 방향, 객체 사이의 선으로 표시하며

양쪽 방향인 경우는 화살표시 없음

l 연관(association)
l 어떤 클래스의 인스턴스가 작업을 수행하기 위하여 다른 클래스를 알

아야 함

1. 다중도(multiplicity)
• * a 0, 1, or more
• 1 a 정확히 1개
• 2..4 a 2개 내지 4개
• 3.. * a 3개 이상

2. 이름 – 객체들의 관계 이름
3. 방향성(navigability) – 질의의 방향, 객체 사이의 선으로 표시하며

양쪽 방향인 경우는 화살표시 없음

18

연관 관계의 다중도

l 1 대 1
l 학생 1명이 학생증(id card) 한 개만을 가진다.

l 1 대 다
l 학생 1명이 여러 클래스를 수강할 수 있다.

l 1 대 1
l 학생 1명이 학생증(id card) 한 개만을 가진다.

l 1 대 다
l 학생 1명이 여러 클래스를 수강할 수 있다.

19

연관의 타입

l 집합(aggregation): “contains”
l 포함하고 있는 클래스 쪽에 하얀 다이아몬드

표시

l 합성(composition): “이 목적을 위하여만
포함됨”
l 집합보다 더 끈끈한 관계
l 부분은 전체가 살고 죽느냐에 좌우 죔
l 포함하고 있는 클래스 쪽에 검은 다이아몬드

로 표시

l 의존(dependency): “일시적 사용”
l 점선으로 표시

l 집합(aggregation): “contains”
l 포함하고 있는 클래스 쪽에 하얀 다이아몬드

표시

l 합성(composition): “이 목적을 위하여만
포함됨”
l 집합보다 더 끈끈한 관계
l 부분은 전체가 살고 죽느냐에 좌우 죔
l 포함하고 있는 클래스 쪽에 검은 다이아몬드

로 표시

l 의존(dependency): “일시적 사용”
l 점선으로 표시

20

합성/집합 관계의 예

l 영화관이 없어지면
l 매표소도 없어짐 Þ 합성
l 그러나 영화는 아직 존재 Þ 집합

21

사례: 클래스 다이어그램

22

클래스와 속성

l Address는 Person의 속성?

23

설계 오류

l Visibility에 오류가 있는 것은?

l area

l 생성자 타입의 오류?

24

전파(propagation) 현상

l 전체 개념의 오퍼레이션이 부분 개념의 오퍼레이션에 의하여 구현되
는 현상

l 동시에 부품의 속성이 전체 개념에 전파되는 현상
l 전파(propagation)와 전체부분 개념의 관계는 상속과 일반화 관계와

유사
l 중요한 차이는

• 상속은 묵시적인 메커니즘
• 전파는 필요할 때 프로그램

l 전체 개념의 오퍼레이션이 부분 개념의 오퍼레이션에 의하여 구현되
는 현상

l 동시에 부품의 속성이 전체 개념에 전파되는 현상
l 전파(propagation)와 전체부분 개념의 관계는 상속과 일반화 관계와

유사
l 중요한 차이는

• 상속은 묵시적인 메커니즘
• 전파는 필요할 때 프로그램

25

패키지 다이어그램

Subsystem A "Subsystem A“로 부르기로 한 패키지의 외부관점
패키지는 서브시스템으로 부름

Subsystem A

패키지 탭

“서브 시스템 A는 세 개의
다른 패키지 “서브시스템
B, C, D”를 그루핑,
확장된 패키지의 이름은
패키지 탭에 표기.

26

Subsystem B
Subsystem C

Subsystem D

“서브 시스템 A는 세 개의
다른 패키지 “서브시스템
B, C, D”를 그루핑,
확장된 패키지의 이름은
패키지 탭에 표기.

패키지 사이의 관계

Subsystem A

Subsystem B Subsystem C

Subsystem D

Subsystem G

27

Subsystem D

Subsystem E Subsystem F

서브시스템 B는 C에 의존한다.
서브시스템 D는 B와 G에 의존
서브시스템 E와 F는 D의 상세화
된 것. 서브시스템 G를 제외한
모든 패키지는 서브시스템
A 안에 존재.

연습 문제 #1

l 항공권 예약 문제
l 예약의 기록은 항상 탑승객 한 명 단위로 이루어짐. 탑승객이 없는 예약

은 없음
l 예약에 탑승객이 여러 명인 경우는 없음
l 탑승객이 다수의 예약을 할 수 있음
l 탑승객이 예약이 하나도 없을 수 있음

28

연습 문제 #2

l 자동판매기를 객체지향으로 개발하기로 하였다. 자판기 안에 있는
여러 컴포넌트들의 관계를 나타내는 UML 클래스 다이어그램을 완
성하시오.

l 자판기에는 동전을 일정 시간 넣지 않으면 자동으로 동전을 내뱉기 위
하여 클락이 내장되어 있다.

l 음료수 선택을 위한 버튼

l 동전 슬롯

l Shelf 센서와 배출구

29

l 자동판매기를 객체지향으로 개발하기로 하였다. 자판기 안에 있는
여러 컴포넌트들의 관계를 나타내는 UML 클래스 다이어그램을 완
성하시오.

l 자판기에는 동전을 일정 시간 넣지 않으면 자동으로 동전을 내뱉기 위
하여 클락이 내장되어 있다.

l 음료수 선택을 위한 버튼

l 동전 슬롯

l Shelf 센서와 배출구

29

클래스 다이어그램 작성 과정

l 반복, 점증적 방법
l 초벌로 작성 후 계속 추가, 삭제

30

참고 문헌

l UML 실전에서는 이것만 쓴다, 인사이트

l UML에 관련된 많은 서적과 웹 튜토리얼이 있음
“UML Distilled”, by Martin Fowler.

31

237점157점464점

교

Questions?

237점157점464점

교

Questions?

